The Complete Map of Semantic Infrastructure Lab Projects

Last Updated: 2025-12-05
Total Projects: 12
Production Ready: 4
Git Initialized: 12 (all in SIL GitHub org, 7 private)

See also: For filesystem locations and git URLs, see /home/scottsen/src/tia/projects/SIL/SIL_ECOSYSTEM_PROJECT_LAYOUT.md


πŸ—ΊοΈ Overview

This index maps all SIL projects to the 6-Layer Semantic OS Architecture. Each project embodies SIL principles (Clarity, Simplicity, Composability, Correctness, Verifiability) and contributes to building the semantic substrate for intelligent systems.

Architecture Reference: Unified Architecture Guide

πŸ”’ Repository Status

All 12 SIL projects are now in the Semantic-Infrastructure-Lab GitHub organization:
- 7 Public Repos: SIL, reveal, morphogen, tiacad, genesisgraph, riffstack, philbrick
- 5 Private Repos: pantheon, browserbridge, sup, prism, agent-ether (marked with πŸ”’)

Private repos are in active development and will be made public when ready for broader collaboration.


πŸ“Š Projects by Layer

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 5: Human Interfaces / SIM                            β”‚
β”‚  Progressive disclosure, exploration, visualization          β”‚
β”‚  β€’ reveal (βœ… Production v0.16.0)                            β”‚
β”‚  β€’ browserbridge (🚧 Alpha)                                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 4: Deterministic Engines                             β”‚
β”‚  MLIR compilation, reproducible execution                   β”‚
β”‚  β€’ morphogen (βœ… Production v0.11)                           β”‚
β”‚  β€’ riffstack (🚧 MVP)                                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 3: Multi-Agent Orchestration                         β”‚
β”‚  Agent protocols, coordination                              β”‚
β”‚  β€’ agent-ether (πŸ“‹ Specification)                           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 2: Domain Modules                                    β”‚
β”‚  Audio, CAD, UI, musical synthesis                          β”‚
β”‚  β€’ morphogen (βœ… Production - audio/physics)                 β”‚
β”‚  β€’ tiacad (βœ… Production v3.1.1 - CAD)                       β”‚
β”‚  β€’ riffstack (🚧 MVP - musical MLIR)                         β”‚
β”‚  β€’ sup (🚧 Alpha - semantic UI)                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 1: USIR (Universal Semantic IR)                      β”‚
β”‚  Universal semantic representation                          β”‚
β”‚  β€’ pantheon (πŸ”¬ Research)                                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 0: Semantic Memory                                   β”‚
β”‚  Persistent provenance-complete semantic graph              β”‚
β”‚  β€’ semantic-memory (πŸ“‹ Planned)                             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Cross-Cutting Infrastructure                               β”‚
β”‚  β€’ genesisgraph (βœ… Production v0.3.0 - provenance)          β”‚
β”‚  β€’ prism (πŸ“‹ Specification - microkernel query)             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🎯 Production Systems (Ready to Use)

Morphogen - Universal Deterministic Computation

Status: βœ… Production v0.11 | Tests: 1,600+ | Coverage: 85%

Layers: 2 (Domain Module) + 4 (Deterministic Engine)

What it does: Universal, deterministic computation platform unifying audio synthesis, physics simulation, circuit design, geometry, and optimization in one type system, scheduler, and language.

Key innovations:
- Cross-domain composition (audio + physics + circuits in same program)
- Deterministic execution (bitwise-identical results)
- MLIR-based compilation
- Multirate scheduling (audio @ 48kHz, physics @ 240Hz)

Use cases: Audio synthesis, physical modeling, multi-domain simulation, generative art

Links:
- Repository: semantic-infrastructure-lab/morphogen
- Documentation
- Examples


Philbrick - Analog/Digital Hybrid Computing

Status: πŸ”¬ Research | Maturity: Design phase | Repo: Public

Layer: 4 (Deterministic Engine - hardware implementation)

What it does: Sister project to Morphogen implementing the same deep architecture in analog/digital hybrid hardware. Four primitive operations (sum, integrate, nonlinearity, events) bridge software and physical computing.

Key innovations:
- Hardware realization of universal computation primitives
- Analog/digital hybrid architecture
- Direct correspondence to Morphogen software model
- Event-driven synchronization between domains

Use cases: Physical computing, analog computation, hardware/software co-design, neuromorphic systems

Relationship: Demonstrates that Morphogen's architecture isn't software-specific - same primitives work in silicon/analog domain

Links:
- Repository: Semantic-Infrastructure-Lab/philbrick (private)


TiaCAD - Declarative Parametric CAD

Status: βœ… Production v3.1.1 | Tests: 1027 | Coverage: 92%

Layer: 2 (Domain Module - CAD/geometric reasoning)

What it does: Declarative parametric CAD system using YAML instead of code. Reference-based composition model for explicit, verifiable geometry.

Key innovations:
- YAML-based declarative syntax (no programming required)
- Reference-based composition (parts as peers, not hierarchy)
- Auto-generated spatial anchors
- Comprehensive schema validation

Use cases: Parametric 3D modeling, manufacturing, design automation, CAD workflows

Links:
- Repository: semantic-infrastructure-lab/tiacad
- Tutorial
- Examples


GenesisGraph - Universal Verifiable Provenance

Status: βœ… Production v0.3.0 | Tests: 363 | Coverage: 63%

Layer: Cross-Cutting (Provenance infrastructure for all layers)

What it does: Open standard for cryptographically verifiable process provenance. Three-level selective disclosure (A/B/C) enables proving compliance without revealing trade secrets.

Key innovations:
- Selective disclosure (prove compliance without revealing IP)
- DID-based identity (did:web, did:ion, did:ethr)
- Zero-knowledge proof templates
- Transparency log anchoring

Use cases: AI pipeline verification, manufacturing compliance, scientific reproducibility, healthcare audit trails

Links:
- Repository: semantic-infrastructure-lab/genesisgraph
- 5-Minute Quickstart
- Use Cases


reveal - Universal Resource Explorer

Status: βœ… Production v0.16.0 | Platform: PyPI | Downloads: 100+/day

Layer: 5 (Human Interfaces / SIM - progressive disclosure)

What it does: Universal resource explorer with semantic understanding. Progressive disclosure pattern applies to ANY structured resource: code, environment variables, databases (planned), APIs (planned), containers (planned).

Key innovations:
- Progressive disclosure - Structure β†’ Elements β†’ Implementation (universal pattern)
- Pattern detection - Code quality checking (bugs, security, complexity)
- AI agent-first design - Built-in --agent-help following llms.txt pattern
- URI adapters - Explore env://, postgres:// (planned), docker:// (planned), https:// (planned)
- Zero configuration - Smart defaults, auto-discovery, 18 file types
- Perfect composability - filename:line format integrates with vim, git, grep, etc.

Use cases: Codebase exploration, AI agent context optimization, code quality checking, infrastructure inspection, token-efficient file reading (10x savings), Unix workflows

Demonstrates SIL Principles:
- βœ… Structure Before Heuristics - Shows structure first, then content
- βœ… Meaning Must Be Explicit - Explicit code structure, not statistical inference
- βœ… Provenance Everywhere - filename:line format is lightweight provenance
- βœ… Composability - Seamless Unix tool integration (doesn't replace, augments)
- βœ… Simplicity - Zero configuration, smart defaults enabled by semantic types

Links:
- Repository: semantic-infrastructure-lab/reveal
- PyPI Package
- AI Agent Guide
- Pattern Detection


SIL - The Lab Itself

Status: βœ… Complete v1.0 | Canonical Docs: 5

Layer: Meta (Lab manifesto, architecture, principles)

What it is: The Semantic Infrastructure Lab itself - vision, principles, research agenda, and unified architecture for the entire ecosystem.

Key documents:
- Manifesto - Why SIL exists
- Technical Charter - System specification
- Principles - The 14 principles
- Unified Architecture Guide - The framework
- Research Agenda Year 1 - Current focus


🚧 Active Development (2-4 Weeks to Production)

Pantheon - Universal Semantic IR

Status: πŸ”¬ Research | Maturity: Prototype | Repo: πŸ”’ Private

Layer: 1 (USIR - Universal Semantic Intermediate Representation)

What it does: Universal semantic IR enabling cross-domain composition. Adapters translate domain languages (audio, CAD, UI) into common semantic graph for interoperability.

Key innovations:
- Universal graph representation
- Domain adapters (audio, CAD, UI, geometry)
- Semantic type system
- Cross-domain operators

Needs before production:
- README polish
- Adapter examples
- API documentation
- Integration tutorials

Use cases: Cross-domain composition, semantic transformation, universal representation layer


RiffStack - Musical MLIR

Status: 🚧 MVP | Maturity: Alpha

Layers: 2 (Domain Module - musical synthesis) + 4 (MLIR engine)

What it does: Stack-based live looping and audio synthesis with YAML-driven patch configuration. Real-time performance environment for musical expression.

Key innovations:
- Stack-based composition
- Live looping
- MLIR compilation for performance
- YAML patch description

Needs before production:
- Architecture documentation
- Performance benchmarks
- Example patches library
- Stability improvements

Use cases: Live musical performance, audio patching, real-time synthesis


SUP - Semantic UI Platform

Status: 🚧 Alpha | Maturity: Early development | Repo: πŸ”’ Private

Layer: 2 (Domain Module - UI/interaction)

What it does: Semantic UI platform translating intent into reactive UI components. Declarative UI description with multiple backend targets (React, Vue, native).

Key innovations:
- Intent β†’ UI compilation
- Backend-agnostic (React, Vue, native)
- Semantic layout constraints
- Accessibility-first

Needs before production:
- API stabilization
- Component library
- Backend implementations
- Documentation

Use cases: Declarative UI construction, multi-platform UI, accessibility automation


BrowserBridge - Browser Automation

Status: 🚧 Alpha | Maturity: Early development

Layer: 5 (Human Interfaces - browser state extraction)

What it does: Event-driven browser automation for human-AI collaboration. Standards-based (CloudEvents, AsyncAPI, WebSocket), protocol-agnostic.

Key innovations:
- Event-driven architecture
- Standards-based protocols
- Semantic DOM extraction
- Human-AI collaboration primitives

Needs before production:
- API documentation
- Integration examples
- Protocol specification
- Stability testing

Use cases: Browser automation, web scraping, UI testing, human-AI collaboration


TIA Browser Reveal - Browser Extension

Status: βœ… Production-Ready | Maturity: v0.1.0 | Repo: πŸ”’ Private

Layer: 5 (Human Interfaces - browser integration)

What it does: Browser extension for extracting semantic content from web pages. Native messaging integration with TIA command-line tools. Validates BrowserBridge architectural concepts in production.

Key innovations:
- Native messaging architecture (browser ↔ command line)
- Site-specific extraction presets (ChatGPT, generic pages)
- DOM query capabilities
- Full automation and testing (8/8 tests passing)

Relationship to BrowserBridge: Proof-of-concept that validates browser extension + command-line integration works in practice. Foundation for BrowserBridge extension package.

Use cases: Web content extraction, ChatGPT conversation capture, page structure analysis, browser-CLI integration

Links:
- Repository: Semantic-Infrastructure-Lab/tia-browser-reveal (private)


πŸ“‹ Planned / Specification Phase

Prism - Microkernel Query Engine

Status: πŸ“‹ Specification Complete | Maturity: Architecture design complete, implementation pending | Repo: 🌍 Public

Layer: Cross-Cutting (Microkernel research) + Layer 1 Frontend (Analytical/Relational domain)

Domain: Analytical and relational computation (queries, data processing, set operations)

Position in SIL: Domain-specific frontend to Pantheon, sister project to Morphogen (audio domain)

What it is: Microkernel-based query execution system for analytical computation. Minimal kernel (3 primitives) with competing service bundles that demonstrate policy flexibility.

Architecture:
- Prism Kernel - 3 primitives (operators, buffers, channels), 14 syscalls, ~200 line C interface
- Set Stack Service - Explainable analytics with Cascades optimizer, MLIR scheduler, domain operators (TimeOps, UnitOps)
- SEM Service - GPU-optimized mesh topology scheduler, learned optimizer, heterogeneous hardware focus
- Services compete on benchmarks; users choose based on workload

Key architectural insight:
Resolved "Set Stack vs SEM" question by recognizing they're not competing architectures to merge, but competing service bundles (policy) running atop the same microkernel (mechanism). Direct application of Jochen Liedtke's minimality criterion.

Key innovations:
- Microkernel architecture (mechanism, not policy) - kernel provides primitives, services provide optimization
- Capability-based buffer isolation (prevents leaks, enables zero-copy, formal verification)
- Pluggable optimizer services (Cascades cost-based, learned ML-guided, greedy heuristic)
- Explainable physical strategies (optimizer justifies decisions with cost models)
- Message-passing concurrency (race-free by construction, async channels)
- Hardware introspection for accurate cost estimation
- Competing service bundles prove microkernel flexibility

Integration with Pantheon:

SetLang/SQL β†’ Prism IR (logical operators) β†’ Pantheon IR β†’ MLIR β†’ Hardware

Domain constraints (TimeOps, UnitOps) map to Pantheon metadata. Prism trace extends Pantheon provenance model.

Specifications complete:
- Microkernel architecture (500 lines) - kernel interface, service model, design rationale
- Optimizer service design (747 lines) - pattern transformations, cost models, strategies
- Set Stack vs SEM resolution (436 lines) - architectural decision, microkernel insight
- SEM specification (complete 5-layer mesh topology alternative)
- Kernel interface (C header with 14 syscalls)
- Original Set Stack 8-layer design (for comparison)

Current work:
- Implementation planning
- Service interface prototyping
- Integration design with Pantheon IR

Timeline: 6-12 months to working prototype (kernel + one service)


Agent Ether - Agent Protocols

Status: πŸ“‹ Specification | Maturity: Planning | Repo: πŸ”’ Private

Layer: 3 (Multi-Agent Orchestration)

What it does: Deterministic protocols for multi-agent coordination. Message passing, state synchronization, and coordination primitives for intelligent agent systems.

Key innovations:
- Deterministic coordination
- Message-passing primitives
- State synchronization
- Provenance-complete interactions

Current work:
- Protocol specification
- Reference implementation design
- Integration patterns with Layer 1-2

Timeline: 3-6 months to specification v1.0


Semantic Memory - Persistent Semantic Graph

Status: πŸ“‹ Planned | Maturity: Concept

Layer: 0 (Foundation - persistent semantic substrate)

What it does: Durable, queryable knowledge graphs with versioning. Persistent semantic continuity across tasks and time.

Key innovations:
- Versioned semantic graphs
- Provenance-complete transformations
- Efficient incremental updates
- Cross-session continuity

Current work:
- Architecture design
- Storage strategy
- Query language design

Timeline: 12-18 months to prototype


πŸ“ˆ Maturity Levels

Symbol Status Description Criteria
βœ… Production Ready for use, stable API 300+ tests, documentation complete, >80% coverage
πŸ”¬ Research Working prototype, evolving Core functionality present, API may change
🚧 Alpha/MVP Early development, unstable Basic features work, needs polish
πŸ“‹ Specification Design phase Documentation only, no code yet
πŸ’­ Planned Future project Concept stage

🎯 Research Themes

SIL projects cluster around four core research themes:

1. Universal Semantic Representations

How do we create IRs that work across domains?

Projects:
- Pantheon - Universal Semantic IR
- Morphogen - Cross-domain composition (audio + physics + circuits)

Open questions:
- What are the universal primitives?
- How do domains compose semantically?
- Can we prove correctness across domain boundaries?


2. Domain-Specific Compilers

How do we compile semantic intent to execution?

Projects:
- Morphogen - Audio/simulation DSL β†’ MLIR
- RiffStack - Musical intent β†’ WebAudio/GPU
- SUP - UI intent β†’ React/Vue/native
- TiaCAD - Geometric intent β†’ CadQuery/STEP

Open questions:
- What's the right compilation strategy per domain?
- How do we preserve semantics during lowering?
- Can we verify compiled output matches intent?


3. Microkernel Architectures

How do we build formally verified systems?

Projects:
- Prism - Microkernel query engine

Open questions:
- What belongs in the kernel vs userspace?
- How do we verify correctness formally?
- What are the minimal primitives?


4. Provenance & Verification

How do we prove computational correctness?

Projects:
- GenesisGraph - Verifiable process provenance

Open questions:
- How do we balance disclosure vs secrecy?
- What's the right granularity for provenance?
- Can we verify AI pipeline correctness?


πŸ“Š Statistics

Total Projects: 12
Production Ready: 4 (morphogen, tiacad, genesisgraph, reveal)
Active Development: 5 (pantheon, philbrick, riffstack, sup, browserbridge)
Specification Phase: 2 (prism, agent-ether)
Planned: 1 (semantic-memory)

Total Test Coverage: 3,100+ tests across all projects
Lines of Code: ~45,000 (production projects)
Documentation: ~15,000 lines (canonical + guides)


🀝 Contributing

Each project has its own contribution guidelines. General SIL contribution principles:

  1. Clarity - Code is clear, not clever
  2. Simplicity - Minimal essential complexity
  3. Composability - Components combine cleanly
  4. Correctness - Invariants preserved, tested
  5. Verifiability - Reasoning is provable

See individual project repositories for specific contribution guides.


πŸ“¬ Contact


Last Updated: 2025-12-05
Document Version: 1.1
Maintainer: Semantic Infrastructure Lab